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Abstract

A sensitivity-based method for localization and assessment of damage in mono-coupled periodic
structures is presented in this paper, in which slopes and curvatures of mode shapes are used to localize
damage, and natural frequencies are then utilized to quantify the damage. The expressions of sensitivity
coefficients of mode shapes, slopes, and curvatures of a mono-coupled periodic system are first derived in
terms of receptances of periodic element. A mono-coupled periodic spring-mass system with 10 degrees of
freedom is used to carry out a sensitivity study to compare the sensitivities of natural frequencies, mode
shapes, slopes, and curvatures to damage. The results show that the sensitivities of these modal parameters
in a mono-coupled periodic structure do not depend on the structural parameters, and therefore there is no
need for a prior analytical model of the structure. The study also demonstrates that among these modal
parameters, curvatures of modal shapes are most sensitive but slopes of mode shapes seem to be more
indicative of damage location. A 20-element mono-coupled periodic spring-mass system is adopted to
demonstrate the capacity of the proposed method to localize and quantify damages in the mono-coupled
periodic system. Finally, a 3-storey near mono-coupled periodic experimental building is used to verify the
actual application of the proposed method in consideration of the influence of measurement noise and non-
perfect periodicity of actual engineering structures. Numerical and experimental results illustrate that only
using a few lower modes with or without noise pollution can accurately detect damages in a mono-coupled
periodic or a near mono-coupled periodic structure, either single or multiple damage locations and slight or
severe damages.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In civil engineering structures, it has already been accepted that damage, either local or global,
can be observed through changes in dynamic characteristics: natural frequencies, modal damping
ratios, mode shapes and their derivatives [1]. This makes vibration-based damage detection
techniques attractive in civil engineering applications. Since modal shapes and their derivatives
such as slopes and curvatures provide local information of structures, a variety of damage
localization methods based on the changes in mode shapes and mode shape derivatives were
developed [2]. Shi and Law used incomplete mode shapes to locate the damage of a 31 bar truss
structure [3]. Abdo and Hori clarified the relationship between damage characteristics and
changes in the rotation of mode shape and found that the rotation of mode shape is promising in
detecting and locating damage in structures [4]. Wahab [5], among others [6], demonstrated the
use of changes in the curvature mode shape to detect and locate damage in a real bridge and found
that the curvature mode shapes are highly sensitive to damage. Wolf and Richardson [7] found
that both the modal assurance criterion (MAC) and the coordinate modal assurance criterion
(COMAC) were not sensitive enough to detect damage in its earlier stages. Ndambi et al. [8]
conducted a comparative study between the use of natural frequencies and mode shape derivatives
for damage assessment in reinforced concrete beams. They found that frequencies are affected by
accumulation of cracks in the beams and are not influenced by the crack damage locations
whereas the MAC and COMAC factors are less sensitive to crack damage compared to
frequencies and the strain energy method appears to be more precise than the flexibility matrix
method. All these studies showed that using mode shapes and mode shape derivatives could
localize damages of structures under some circumstances. However, all methods discussed above
require a baseline reference data to obtain the sensitivity coefficients, usually a prior finite element
model of the structure in its undamaged condition, which poses a restriction on the applicability in
some cases where the analytical model of the undamaged test structures is not available. Parloo et
al. [9] presented a mode shape sensitivity-based method for the localization and assessment of
damage in which the sensitivity coefficients make no use of the original analytical model.
However, the exact sensitivities are calculated on the basis that all mode shapes of the intact
structure should be available. In practice, only a limited number of modes can be measured, that
is, an approximation of the sensitivities to some content has to be obtained instead.

Engineering structures including multi-storey buildings, elevated guideways for high-speed
transportation vehicles (‘‘Maglev’’ systems), multi-span bridges, chemical pipelines, stiffened
plates and shells in aerospace and ship structures, space station structures and layered composite
structures, can be considered as a periodic or a near periodic system. Zhu and Wu [10] discussed
the sensitivity of natural frequencies to damages in a mono-coupled periodic structure. They
found that the sensitivity of natural frequencies does not depend on the structural parameters, and
therefore there is no need for the detailed structural parameters of the structures to obtain
sensitivity coefficients of natural frequencies. To extend the work [10], the first objective of this
paper is to derive the explicit expressions for mode shapes, slopes, and curvatures, consecutively,
to obtain the sensitivities of these modal parameters to damages in mono-coupled periodic
systems. A mono-coupled periodic spring-mass system with 10 degrees of freedom is then used to
discuss and compare the sensitivities of different modal parameters, including natural frequencies,
mode shapes, slopes, and curvatures, to damages and their capacity for damage localization. A
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two-stage sensitivity-based method, which utilizes slopes and curvatures of mode shapes to
localize damage in the first stage and the limited natural frequencies to quantify the damage in the
second stage, is proposed to detect damages in a mono-coupled periodic system. A 20-element
mono-coupled periodic spring-mass system is adopted to demonstrate the capacity of the
proposed method to localize and quantify damages. Finally, a 3-storey mono-coupled near
periodic experimental building is used to demonstrate the actual application of the proposed
method in consideration of the influence of measurement noise and non-perfect periodicity of
actual engineering structures.
2. Sensitivity coefficient analysis

2.1. Sensitivity coefficients

Consider a finite mono-coupled periodic system with one single damage in the jth element and
terminating at the general boundaries at extreme end coordinates C and D as shown in Fig. 1.
Based on the receptance method, the displacement xd

i at ith element in terms of the displacement
xd

0 at end C is [10]

xd
i ¼

e�im þ Feim

1 þ F
xd

0 ði ¼ 1; 2 . . . ; j � 1Þ; (1a)

xd
i ¼

ðe�ðN�iÞm þ beðN�iÞmÞ½awrðaAA � awtÞe
�ðj�1Þm þ awtðaAA � awrÞe

ðj�1ÞmF�
ð1þ FÞaAB½awreðN�jÞmbþ awte�ðN�jÞm�

xd
0

ði ¼ j; j þ 1; . . . ;NÞ ð1bÞ

in which

F ¼ �

½aAAaBB � aBAaAB þ aAAawt � aBBawt � a2
wt�a

2
wrbe

ðN�2jþ1Þm

þ½aAAaBB � aABaBA þ aAAawr � aBBawt � awtawr�awrawtbe�ðN�1Þm

½aAAaBB � aBAaAB þ aAAawr � aBBawr � a2
wr�a

2
wte

�ðN�2jþ1Þm

þ½aAAaBB � aABaBA þ aAAawt � aBBawr � awtawr�awrawtbeðN�1Þm
  Reflected wave         AF          BF    Reflected wave 

                    
AX          

BX  

  Incident wave                      Transmitted wave 

Boundary                                                       Boundary

  C              1                     j-1           j           j+1                   N               D 

CF A             B                                DF  

Fig. 1. Block diagram of an N-element periodic system with one damage in the jth element.
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b ¼ �
awr � aD

awt � aD

awt

awr

; awt ¼ all � alre
�m; awr ¼ all � alre

m; cosh m ¼
all þ arr

2alr

;

where all and arr are the direct receptances and alr is the transfer receptance of a periodic element,
respectively; aAA; aBB are the direct receptances and aAB; aBA are the transfer receptances of the
damaged element, respectively; aD is the receptance at end D; and m is the wave propagation
constant.

Substituting the nth natural circular frequency, od
n ; into Eq. (1) yields the expressions of normalized

mode shapes, fd
in; in the nth mode of the damaged periodic structure by specifying fd

Nn ¼ 1

fd
in ¼

ðe�im þ FeimÞaAB½awre
ðN�jÞmbþ awte

�ðN�jÞm�

ð1 þ bÞ½awrðaAA � awtÞe�ðj�1Þm þ awtðaAA � awrÞeðj�1ÞmF�
ði ¼ 1; 2; . . . ; j � 1; n ¼ 1; 2; . . . ;NÞ; ð2aÞ

fd
in ¼

e�ðN�iÞm þ beðN�iÞm

1 þ b
ði ¼ j; j þ 1; . . . ;N; n ¼ 1; 2; . . . ;NÞ: (2b)

For an undamaged periodic structure, the following relations hold on:

aAA ¼ all ; aBB ¼ arr; aAB ¼ aBA ¼ alr: (3a2c)

Substituting Eq. (3) into Eq. (2) and further simplification then yield the nth normalized mode shapes,
fu

in; of the periodic structure without damage by specifying fu
Nn ¼ 1:

fu
in ¼

e�ðN�iÞm þ beðN�iÞm

1þ b
ði ¼ 1; 2; . . . ;N; n ¼ 1; 2; . . . ;NÞ: (4)

For the periodic structure, the slope of mode shape in the nth mode is defined as

f0
in ¼

fin � fði�1Þn

h
ði ¼ 1; 2; . . . ;N; n ¼ 1; 2; . . . ;NÞ; (5)

where f is the mode shape and h is the distance between two successive nodes.
Similarly, the nth mode shape curvature in the nth mode shape is defined as

f00
in ¼

fðiþ1Þn � 2fin þ fði�1Þn

h2
ði ¼ 1; 2 . . . ;N; n ¼ 1; 2; . . . ;NÞ: (6)

If an increase of relative flexibility in the jth element, i.e., Df j=f ; is used to represent the damage
in the jth element, the sensitivities of mode shapes, slopes, and curvatures with respect to damage
in the jth element are

S̄
f
in;j ¼

qfin

qf̄ j

¼ lim
Dkj!0

fd
in � fu

in

Df j=f
; S̄

f0

in;j ¼
qf0

in

qf̄ j

¼ lim
Dkj!0

f0
in

d
� f0

in
u

Df j=f
;

S̄
f00
in;j ¼

qf00
in

qf̄ j

¼ lim
Df j!0

f00
in

d
� f00

in
u

Df j=f

ðn ¼ 1; 2; . . . ;N; i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ;NÞ: ð7a2cÞ
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2.2. Sensitivity coefficient analysis

The N-element mono-coupled periodic spring-mass system with one fixed end C and one free
end D (i.e., aD ¼ 1), which is usually adopted to represent many engineering structures such as
multi-storey or highrise buildings in practice, is used here to carry out the sensitivity analysis (see
Fig. 2).

The receptances of a periodic element can be expressed as

all ¼ f �
1

mo2
; arr ¼ alr ¼ arl ¼ �

1

mo2
; (8)

where m and f are the mass and flexibility of the spring-mass element, respectively, and o is the
vibration circular frequency.

The receptances of the damaged element (i.e., the jth element) are

aAA ¼ f þ Df j �
1

mo2
¼ all þ Df j; aAB ¼ aBA ¼ aBB ¼ �

1

mo2
; (9)

where Df j is the change of flexibility in the jth element due to damage.
Substituting Eq. (8) into Eq. (4) yields the nth mode shape of the periodic system without

damage

fu
in ¼

cos½ðN � i þ 0:5Þgu
n�

cos gu
n=2

ði ¼ j; . . . ;N; n ¼ 1; 2; . . . ;NÞ; (10)

where gu
n ¼ 2 arcsin½ou

n

ffiffiffiffiffiffiffi
mf

p
=2�; and ou

n is the nth natural circular frequency of the undamaged
periodic system.

Substituting Eqs. (8) and (9) into Eq. (2) yields the nth mode shape of the periodic system with
one single damage in the jth element

fd
in ¼

cosðgd
n=2Þ cos½ðN � i þ 0:5Þgd

n � � 2aj sinðgd
n=2Þ sin½ðN � j þ 1Þgd

n � cos½ðj � i � 0:5Þgd
n �

cos2ðgd
n=2Þ

ði ¼ 1; . . . ; j � 1Þ;

fd
in ¼

cos½ðN � i þ 0:5Þgd
n �

cosðgd
n=2Þ

ði ¼ j; . . . ;NÞ; ðj ¼ 1; 2; . . . ;N; n ¼ 1; 2; . . . ;NÞ; (11a,b)

where aj ¼ Df j=f ; and gd
n can be obtained by solving Eq. (12)

cosðgd
n=2Þ cos½ðN þ 0:5Þgd

n � � 2aj sinðgd
n=2Þ sin½ðN � j þ 1Þgd

n � cos½ðj � 0:5Þgd
n � ¼ 0: (12)
k m   k         m    k − ∆k     m         k         m        k         m 

          
1 j-1 j N-1 N

Fig. 2. N-element periodic spring-mass system of one fixed and one free ends with a single damage in the jth element.



ARTICLE IN PRESS

H.P. Zhu, Y.L. Xu / Journal of Sound and Vibration 285 (2005) 365–390370
Substituting Eqs. (10) and (11) into Eq. (7a) and further simplification yield the sensitivity of
nth mode shape

S
f
in;j ¼

sinðgu
n=2Þf1 þ cos½ð2j � 1Þgu

n�gf0:5 sin½ðN � iÞgu
n� þ ðN � iÞ cosðgu

n=2Þ sin½ðN � i þ 0:5Þgu
n�g

ðN þ 0:5Þcos3ðgu
n=2Þ

�
2 sinðgu

n=2Þ sin½ðN � j þ 1Þgu
n� cos½ðj � i � 0:5Þgu

n�

cos2ðgu
n=2Þ

ði ¼ 1; . . . ; j � 1Þ;

S
f
in;j ¼

sinðgu
n=2Þf1 þ cos½ð2j � 1Þgu

n�gf0:5 sin½ðN � iÞgu
n� þ ðN � iÞ cosðgu

n=2Þ sin½ðN � i þ 0:5Þgu
n�g

ðN þ 0:5Þcos3ðgu
n=2Þ

ði ¼ j; . . . ;NÞ ðj ¼ 1; 2; . . . ;N; n ¼ 1; 2; . . . ;NÞ ð13a;bÞ

The slopes and curvatures of the nth mode shapes of the periodic system without and with one
single damage in jth element can be obtained by substituting Eqs. (10) and (11) into Eqs. (5) and
(6), respectively. Moreover, the expressions for the sensitivities of slopes and curvatures of the nth
mode shape can be derived by using Eqs. (7b) and (7c)

S
f0

in;j ¼ �

sinðgu
n=2Þf1 þ cos½ð2j � 1Þgu

n�gfsinðg
u
n=2Þ cos½ðN � i � 0:5Þgu

n�

þðN � iÞ sinðgu
nÞ cos½ðN � iÞgu

n� þ cosðgu
n=2Þ sin½ðN � i � 0:5Þgu

n�g

ðN þ 0:5Þcos3 ðgu
n=2Þ

�
4sin2

ðgu
n=2Þ sin½ðN � j þ 1Þgu

n� sin½ðj � i � 1Þgu
n�

cos2 ðgu
n=2Þ

ði ¼ 1; . . . ; j � 2Þ;

S
f0

in;j ¼ �

sinðgu
n=2Þf1þ cos½ð2j � 1Þgu

n�gfsinðg
u
n=2Þ cos½ðN � i � 0:5Þgu

n�

þðN � iÞ sinðgu
nÞ cos½ðN � iÞgu

n� þ cosðgu
n=2Þ sin½ðN � i � 0:5Þgu

n�g

ðN þ 0:5Þcos3 ðgu
n=2Þ

þ
2 sinðgu

n=2Þ sin½ðN � j þ 1Þgu
n� cos½ðj � i � 0:5Þgu

n�

cos2 ðgu
n=2Þ

ði ¼ j � 1Þ;

S
f0

in;j ¼ �

sinðgu
n=2Þf1þ cos½ð2j � 1Þgu

n�gfsinðg
u
n=2Þ cos½ðN � i � 0:5Þgu

n�

þðN � iÞ sinðgu
nÞ cos½ðN � iÞgu

n� þ cosðgu
n=2Þ sin½ðN � i � 0:5Þgu

n�g

ðN þ 0:5Þcos3 ðgu
n=2Þ

ði ¼ j; . . . ;NÞ; ðj ¼ 1; 2; . . . ;N; n ¼ 1; 2; . . . ;NÞ ð14a2cÞ

S
f00
in;j ¼ �

2 sin3
ðgu

n=2Þf1þ cos½ð2j � 1Þgu
n�gfsin½ðN � iÞgu

n� þ 2ðN � iÞ cosðgu
n=2Þg

ðN þ 0:5Þcos3ðgu
n=2Þ

þ
8sin3

ðgu
n=2Þ sin½ðN � j þ 1Þgu

n� cos½ðj � i � 0:5Þgu
n�

cos2ðgu
n=2Þ

ði ¼ 1; . . . ; j � 2Þ;



ARTICLE IN PRESS

H.P. Zhu, Y.L. Xu / Journal of Sound and Vibration 285 (2005) 365–390 371
S
f00
in;j ¼ �

2sin3
ðgu

n=2Þf1þ cos½ð2j � 1Þgu
n�gfsin½ðN � iÞgu

n� þ 2ðN � iÞ cosðgu
n=2Þg

ðN þ 0:5Þcos3ðgu
n=2Þ

þ
4ð3� 2 cosðgu

nÞÞ sinðg
u
n=2Þ sin½ðN � j þ 1Þgu

n�

cosðgu
n=2Þ

ði ¼ j � 1Þ;

S
f00
in;j ¼ �

2 sin3
ðgu

n=2Þf1 þ cos½ð2j � 1Þgu
n�gfsin½ðN � iÞgu

n� þ 2ðN � iÞ cosðgu
n=2Þg

ðN þ 0:5Þcos3ðgu
n=2Þ

�
2 sinðgu

n=2Þ sin½ðN � j þ 1Þgu
n�

cosðgu
n=2Þ

ði ¼ jÞ;

S
f00
in;j ¼ �

2 sin3
ðgu

n=2Þf1 þ cos½ð2j � 1Þgu
n�gfsin½ðN � iÞgu

n� þ 2ðN � iÞ cosðgu
n=2Þg

ðN þ 0:5Þcos3ðgu
n=2Þ

ði ¼ j þ 1; . . . ;NÞ; ðj ¼ 1; 2; . . . ;N; n ¼ 1; 2; . . . ;NÞ: ð15a2dÞ

From Eqs. (13)–(15) it can be seen that for a periodic spring-mass system, the sensitivities of mode
shapes, slopes, and curvatures to damages relate only on the number of the element of the periodic
system (N), the mode number (n) and the location of damage ( j ). They do not depend on
structural parameters such as mass and flexibility. Thus, for a periodic spring-mass system, the
sensitivities of mode shapes, slopes, and curvatures can be obtained only if the number of the
element of the periodic system (N) is known, not requiring physical parameters of the structure.
3. Application of sensitivity analysis

A mono-coupled periodic spring-mass system with 10 elements shown in Fig. 2 is used here to
numerically discuss and compare the sensitivities of relative natural frequencies, mode shapes,
slopes, and curvatures of the system. The sensitivity of relative natural frequencies with respect to
damage is given [10] as

S̄
o
n;j ¼

qōn

qf̄ j

¼ lim
Df j!0

ðod
n � ou

nÞ=o
u
n

Df j=f
; (16)

where od
n is the nth natural circular frequency of the damaged periodic system.

The sensitivity coefficients of relative natural frequencies obtained from Eq. (16) satisfyPN
j¼1 S̄

o
n;j ¼ �0:5 ðn ¼ 1; 2 . . . ; 10Þ: The maximum absolute sensitivity coefficients of relative

frequencies in the first 10 modes are, respectively, 0.0947 (at S̄
o
1;1), 0.0905 (at S̄

o
2;1), 0.0920 (at S̄

o
3;9),

0.0714 (at S̄
o
4;9 and S̄

o
4;10), 0.0905 (at S̄

o
5;5 and S̄

o
5;10), 0.0947 (at S̄

o
6;10), 0.0947 (at S̄

o
7;7 and S̄

o
7;10),

0.0905 (at S̄
o
8;2;S̄

o
8;6 and S̄

o
8;9), 0.0947 (at S̄

o
9;3 and S̄

o
9;7) and 0.0947 (at S̄

o
10;4 and S̄

o
10;6). The results

indicate that the maximum sensitivity coefficients of relative frequencies change slightly with the
mode number.

The sensitivity coefficients of mode shapes are computed based on Eq. (13). The numerical
results show that the maximum absolute sensitivity coefficients of the first 10 mode shapes are
0.1336 (at S̄

f
11;1), 0.3607 (at S̄

f
12;1), 0.5874 (at S̄

f
83;9), 0.8571 (at S̄

f
84;9; S̄

f
74;10 and S̄

f
94;10), 1.2927 (at
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S̄
f
75;10), 1.9419 (at S̄

f
86;10), 3.6166 (at S̄

f
87;10), 6.0652 (at S̄

f
78;9), 12.8716 (at S̄

f
39;7) and 34.7385 (at

S̄
f
310;4), respectively. Compared with the results of natural frequencies, the variation of sensitivity

coefficients based on mode shapes is larger and the coefficients increase with the mode number. It
is observed from the computed results that for a given mode the mode shape has larger
sensitivities with respect to some damaged locations where the natural frequencies are also very
sensitive. For example, for the first and second modes, damage in element 1 causes the largest
changes in both frequencies and mode shapes; for the third mode, both the frequencies and mode
shapes are most sensitive to damage in the ninth element; and for the fourth mode, the most
sensitive elements are elements 9 and 10.

Fig. 3 shows the absolute sensitivities of the first three mode shapes with respect to damages in
elements 1, 4, 7 and 10, respectively. It is seen that the sensitivities achieve the maximum values at
the starting node of the damaged elements. They sharply decrease in the damaged elements and
achieve local minimum values at the end of damaged elements, which seems to indicate the
locations of damage. The figure also tells us that the maximum absolute sensitivities of mode
shapes with respect to a specified damage location do not increase as increasing mode number.
For example, the change in the second mode shape due to damage in the 4th element is zero,
which is smaller than the change in the first mode shape. The maximum sensitivity of the second
mode shape to damage in the 7th element is 0.2711 while the value for the third mode shape is
0.12331.

In order to illustrate the phenomenon observed in Fig. 3, the sensitivity, So
n;j; of natural

frequencies with respective to damage, which represents the change in nth natural frequency for
one single damage, is introduced

So
n;j ¼

qon

qf̄ j

¼ lim
Df j!0

od
n � ou

n

Df j=f
¼ S̄

o
n;jo

u
n: (17)

The nth natural circular frequency of an undamaged periodic system, ou
n; is [10]

ou
n ¼ 2

ffiffiffiffiffiffiffi
1

mf

s
sin

p
2

2n � 1

2N þ 1

� �
: (18)

Obviously, the ratios of different natural frequencies of an undamaged periodic spring-mass
system depend only on the number of periodic element (N) and the number of natural frequency
(n). For the 10-element mono-coupled periodic spring-mass system, the ratios of the 10 natural
frequencies to the first one are 1, 2.978, 4.889, 6.691, 8.343, 9.809, 11.056, 12.056, 12.787 and
13.232, respectively. If the first circular natural frequency of the periodic spring-mass system is
assumed to be unity, i.e. ou

1 ¼ 1 rad=s; the maximum sensitivity coefficients, So
n;j; of the 10 natural

frequencies are 0.0947, 0.2695, 0.4498, 0.4777, 0.7551, 0.9289, 1.047, 1.0911, 1.2109 and 1.2531,
respectively. This indicates that the maximum sensitivity coefficients of natural frequencies
increase as the increase in the number of natural frequencies. Fig. 4 shows the absolute
sensitivities of the first three natural frequencies with respect to damages in elements 1, 4, 7 and
10, respectively. It is seen from the figure that So

2;4 ¼ 0 and So
2;7 ¼ 0:2764774So

3;7 ¼ 0:04881;
which matches well with the trends of sensitivities of mode shapes from Fig. 3. The same results
for other modes and damages in other elements, which are not given here for clarification, are also
observed. This implies that the modes of higher changes in natural frequencies are more sensitive
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Fig. 3. The absolute sensitivities of the first three mode shapes with respect to damages in elements 1, 4, 7 and 10 of the

10-element periodic spring-mass system.
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to damage in mode shapes, and thus it is beneficial for choosing the suitable modes to localize
damages.

The sensitivity coefficients of slopes of mode shapes are computed based on Eq. (14).
The numerical results show that the maximum absolute sensitivity coefficients of the first 10
modes are 0.1336 (at S̄

f0

11;1), 0.4194 (at S̄
f0

72;7), 0.7778 (at S̄
f0

43;4), 1.2857 (at S̄
f0

34;3), 2.1054 (at S̄
f0

95;10),
3.6842 (at S̄

f0

96;10), 6.0374 (at S̄
f0

37;2), 11.6334 (at S̄
f0

78;9), 23.8356 (at S̄
f0

39;7) and 69.477
(at S̄

f0

410;4), respectively. Compared with the results of natural frequencies and mode shapes,the
maximum sensitivities of slopes are larger and increase with mode number. The damaged
locations that are most sensitive to the slopes are also more sensitive to natural frequencies
and mode shapes. Fig. 5 shows the absolute sensitivities of the first three modes with
respect to damages in elements 1, 4, 7 and 10, respectively. It can be seen from Fig. 5 that the
absolute sensitivity values of the slopes achieve the maximum values at the nodes of the
damaged locations, and only one peak occurred in the damaged element for the first mode
while there are other peaks for modes 2 and 3 besides the main peak in the damaged element.
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Fig. 4. The absolute sensitivities of the first three natural frequencies with respect to damages in elements 1, 4, 7 and 10

of the 10-element periodic spring-mass system.

H.P. Zhu, Y.L. Xu / Journal of Sound and Vibration 285 (2005) 365–390374
Fig. 5 also shows that the maximum sensitivities of the slopes of mode shapes with respect
to a specified damage location do not increase as the increase in mode number. For example,
the change in the second mode due to damage in the 4th element is zero. The maximum
sensitivity of the second mode to damage in 7th element is 0.4194 while the value for the third
mode is 0.12186.

The sensitivity coefficients of the curvature mode shapes are computed based on Eq. (15). The
numerical results show that the maximum absolute sensitivity coefficients for the first 10 modes
are 0.1518 (at S̄

f00

11;1), 0.5038 (at S̄
f00

72;8), 1.0643 (at S̄
f00

83;9), 1.7143 (at S̄
f00

34;3 and S̄
f00

84;9), 3.3789 (at S̄
f00

95;10),
5.4265 (at S̄

f00

96;10), 9.7565 (at S̄
f00

87;10), 19.6937 (at S̄
f00

78;9), 48.0778 (at S̄
f00

39;7), and 129.1538 (at
S̄
f00

510;9),respectively. Compared with the results of natural frequencies, mode shapes, and slopes,
the maximum values of the sensitivities of curvature mode shapes are the largest and increase
with the mode number. The damaged locations that are the most sensitive to the curvature
mode shapes are also more sensitive to natural frequencies, mode shapes and slopes of
mode shapes. Fig. 6 shows the absolute sensitivities in the first three modes with respect to
damages in elements 1, 4, 7 and 10, respectively. It can be seen from Fig. 6 that the absolute
sensitivities of the curvature mode shapes achieve the maximum values between the two nodes of
the damaged locations. The observation from Fig. 6 also shows that there is only one peak in the
damaged element for the first mode while there are other peaks for modes 2 and 3 besides the main
peak in the damaged element. The maximum sensitivities of the curvature mode shapes with
respect to a specified damage location do not increase as the increase in mode number. For
instance, the change in the second mode due to damage in the 4th element is zero. The maximum
sensitivity of the second mode to damage in 7th element is 0.4828 while the value for the third
mode is 0.1779.
4. Sensitivity-based damage detection

As mentioned in the above section, the sensitivity coefficients of slopes and curvatures of mode
shapes are highly sensitive to damages in a mono-coupled periodic spring-mass system and are
indicative of the location of single damage. Since the damaged location which is the most sensitive
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Fig. 5. The absolute sensitivities of slopes of the first three mode shapes with respect to damages in elements 1, 4, 7 and

10 of the 10-element periodic spring-mass system.
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to the slope and curvature of a certain mode is also the most sensitive to the corresponding natural
frequency for the mono-coupled periodic structure, a few of the mode shapes in which the
changes of natural frequencies are larger can be selected to localize multiple damages.
The periodic elements with the peaks appearing simultaneously in both the slope and
curvature of the mode shape can be considered as potential damage locations. According to
this rule, the capacity of the slopes and curvatures of mode shapes to localize single and multiple
damages, either slight or severe damage, is explored in this section through numerical and
experimental examples. Once the damages are localized, the damage can be quantified from
natural frequencies only within the potential damage locations by adopting the first-order
approximation from Zhu and Wu [10]

fDōng ¼ ½S̄
o
n;j�fajg; (19)

where Dōn ¼ ðod
n � ou

nÞ=o
u
n is the relative change of the nth circular natural frequency.
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In this study, an optimization solution can be found by minimizing the following matrix norm g
under the inequality constraint:

g ¼ k½S̄n;j�fajg � fDōngk fajX0g: (20)
4.1. Numerical example

To assess the performance of the proposed method, the 20-element mono-coupled periodic
spring-mass system used in [10] is adopted. Eleven cases representing slight damage (5% flexibility
increase), middle damage (10% and 20% flexibility increase) and severe damage (30% flexibility
increase) in one or multiple elements, and the changes in the first three natural frequencies are
listed in Table 1.
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4.1.1. Damage localization

The slope and curvature of mode shape in one of the first three modes, in which the change of
natural frequency is the largest (underlined in Table 1), are used to localize damages of the 20-
element periodic spring-mass system for each damage scenario. Fig. 7 shows the absolute changes
of the slope and curvature of the 3rd mode shape before and after damage in damage scenarios 1,
2 and 3, which represent a slight damage that occurred in single element, respectively. It is seen
that the peaks appear simultaneously in both the slope and curvature of the 3rd mode shape at
elements 1, 10, and 20 in scenarios 1, 2 and 3, respectively. Fig. 8 shows the absolute changes of
the slope and curvature of the 3rd mode shape in damage scenario 7 where there are multiple
slight damages with the same damage size. It is seen again that the peaks appear simultaneously in
both the slope and curvature of the 3rd mode shape at elements 1, 10 and 20. Fig. 9 shows the
results for damage scenarios 9, 10 and 11, which represent the multiple damages with different
damage sizes, respectively. For scenario 9, the peaks appear simultaneously in both the slope and
curvature of the 3rd mode shape at elements 1, 10 and 20. For scenario 10, the peaks appear
simultaneously in both the slope and curvature of the 3rd mode shape at elements 1, 4, 10 and 20.
The same observation can be made for scenario 11. The results for damage scenarios 4, 5 and 6,
representing single severe damage, have the same trends as those for damage scenarios 1, 2 and 3,
which are not given here for clarification. The results for damage scenario 8, where multiple severe
damages with the same size exist, are the same as those for damage scenario 7. It can be seen from
these figures that the damages in single or multiple locations, either slight or severe damage, can
be accurately localized by the slope or curvature of mode shape in only the third mode in which
the change of natural frequency is the largest within the first 3 modes. The figures also indicate
that the absolute changes of mode shape curvatures at the damaged locations are larger than
those of the slopes of mode shapes, but the results for the slopes of mode shapes seem more
indicative of damage locations.

4.1.2. Damage quantification
The relative changes of the first three natural frequencies in the 11 damage scenarios listed in

Table 1 are used to detect the sizes of the damages within the damage locations identified by the
slope and curvature of mode shapes. To illustrate the influence of the number of available natural
frequencies on damage detection, the first, the first two and the first three natural frequencies are
used, respectively.

Fig. 10 shows the damage quantification results for single and slight damage cases (scenarios
1–3). Fig. 11 shows the results of detection of single severe damage (scenarios 4–6) and Fig. 12
shows the detection of multiple damages with the same size (scenarios 7 and 8). The results in
Figs. 10–12 tell us that the sizes of damages in these scenarios can be accurately identified, and the
degree of accuracy of detection is not affected by the number of the natural frequencies used.
Using only one of the lower natural frequencies, even the first natural frequency, is capable of
accurately quantifying the damage in one single location, or damages of the same size in multiple
locations, either slight or severe damages.

Fig. 13 shows the detection of multiple damages with different damage sizes (scenarios 9–11).
The results demonstrate that the degree of accuracy of damage size detection depends on the
number of available measured frequencies. For example, only the first frequency is not sufficient
to quantify correctly the damages in these scenarios. As the number of potential damaged
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Table 1

Damage scenarios and the corresponding frequency changes for the 20-element periodic spring-mass system

Mode

no.

Frequency change Doi and Doi=oi in percentage due to damage

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Element Damage

(%)

Element Damage

(%)

Element Damage

(%)

Element Damage

(%)

Element Damage

(%)

Element Damage

(%)

1 5 10 5 20 5 1 30 10 30 20 30

1 �0.008 (�0.245%) �0.004 (�0.137%) �0.0 (�0.0%) �0.045 (�1.434%) �0.025 (�0.804%) �0.00 (�0.01%)

2 �0.023 (�0.240%) �0.008 (�0.081%) �0.001 (�0.013%) �0.133 (�1.412%) �0.046 (�0.484%) �0.007 (�0.078%)

3 �0.037 (�0.234%) �0.029 (�0.188%) �0.005 (�0.035%) �0.212 (�1.358%) �0.174 (�1.112%) �0.033 (�0.212%)

Scenario 7 Scenario 8 Scenario 9 Scenario 10 Scenario 11

Element Damage

(%)

Element Damage

(%)

Element Damage

(%)

Element Damage

(%)

Element Damage

(%)

Element Damage

(%)

1 5 1 30 1 30 1 30 1 30 15 10

10 5 10 30 10 10 4 10 4 10 20 30

20 5 20 30 20 10 10 5 10 20

20 20

1 �0.012 (�0.379%) �0.079 (�2.215%) �0.053 (�1.700%) �0.063 (�2.005%) �0.078 (�2.477%)

2 �0.031 (�0.334%) �0.188 (�1.999%) �0.151 (�1.609%) �0.164 (�1.747%) �0.232 (�2.470%)

3 �0.071 (�0.453%) �0.402 (�2.573%) �0.273 (�1.765%) �0.261 (�1.671%) �0.395 (�2.531%)
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Fig. 7. The absolute changes of slope and curvature of the third mode shape due to damages in the 20-element periodic
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locations increases, an appropriate amount of available natural frequencies is necessary to
accurately identify the sizes of multiple damages. It is seen that for scenario 9, in which damages
occur in three locations, the damage in element 20 is identified with a large error. For scenarios 10
and 11, where there are damages in 4 and 5 locations, the damage in element 20 cannot be
identified if only the first natural frequency is used. If all the damages in 4 or 5 locations in
scenarios 10 or 11 are accurately identified, respectively, the 3 natural frequencies should be used.
Compared with the results in [10], the degree of accuracy for damage detection is improved largely
and the number of used frequencies decreases due to the accurate localization of damages in the
first step.

4.2. Experimental verification

The numerical example of the 20-element spring-mass system given in the above section is a
perfect mono-coupled periodic structure, and the modal parameters are measurement noise free.
To consider the influence of some actual factors such as measurement noise and non-perfect
periodicity of structures on the application of the proposed method, a 3-storey mono-coupled
near periodic experimental building is used.

4.2.1. Description of experimental model and damage scenarios
The building model was constructed using 3 steel plates of 850� 500� 25mm3 and 4 equally

sized rectangular columns of 9:5 � 75mm2 (shown in Fig. 14). The plates and columns were
properly welded to form rigid connections. The building was then welded on a steel base plate of
20mm thickness. The steel base plate was in turn bolted firmly on a shaking table using a total of
8 bolts of high tensile strength. The overall dimensions of the building were 1450� 850�
500mm3: All the columns were made of high strength steel of 435MPa yield stress and 200GPa
modulus of elasticity. The 9:5 � 75mm2 cross-section of the column was arranged in such a way
that the first natural frequency of the building was much lower in the x-direction than in the
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Fig. 10. Detection of single light damage in the 20-element periodic spring-mass system: (a) scenario 1, (b) scenario 2,

(c) scenario 3.

H.P. Zhu, Y.L. Xu / Journal of Sound and Vibration 285 (2005) 365–390382
y-direction. This arrangement restricted the building motion in the x-direction and thus the
building was effectively reduced to planar building in the x–z plane. The thickness of each steel
floor was 25mm so that the floor can be regarded as a rigid plate in the horizontal direction,
leading to a shearing type of deformation. The geometric scale of the building model was assumed
to be 1

5
: To have a proper simulation, an additional mass block of 135 kg was placed on each floor

of the building model.
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Fig. 11. Detection of single severe damage in the 20-element periodic spring-mass system: (a) scenario 4, (b) scenario 5,

(c) scenario 6.

H.P. Zhu, Y.L. Xu / Journal of Sound and Vibration 285 (2005) 365–390 383
The building model was subjected to a white noise random ground excitation generated by a
3� 3m2 MTS shaking table of The Hong Kong Polytechnic University. Each building floor was
equipped with one B&K 4370 accelerometer in the x-direction. The signals from the
accelerometers were analysed by commercial computer software ARTeMIS, developed by
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Fig. 12. Detection of multiple damages with the same size in the 20-element periodic spring-mass system: (a) scenario 7,

(b) scenario 8.

H.P. Zhu, Y.L. Xu / Journal of Sound and Vibration 285 (2005) 365–390384
Structural Vibration Solutions in Denmark, to identify the natural frequencies and mode shapes
using the method of Frequency Domain Decomposition (FDD).

Four damage scenarios are considered in the experimental studies. Table 2 lists the four damage
scenarios and the corresponding changes in the three natural frequencies. It is noted that in the
cases of multiple damages, the damages occur in the two successive elements. The four damage
scenarios were implemented step by step by cutting the width of the columns in the first storey to
51.30mm (scenario 1) and then to 37.46mm (scenario 2) within a height of 60mm from the
bottom, followed by cutting the width of the columns in the second storey to 51.30mm (scenario
3) and then to 37.46mm (scenario 4) within a height of 60mm from the second floor.

4.2.2. Damage localization

The test building has only 3 degrees of freedom and it is impossible for two peaks to appear in
two successive freedoms of a curve. Thus, two modes in which the changes of natural frequencies
are larger are chosen (underlined in Table 2). Fig. 15 plots the slopes and curvatures of mode
shapes in two of the three modes for damage scenarios 1 and 3, respectively. The slopes and
curvatures of mode shapes in damage scenarios 2 and 4 are not given here because their trends are
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Fig. 13. Detection of multiple damages with different sizes in the 20-element periodic spring-mass system: (a) scenario

9, (b) scenario 10, (c) scenario 11.

H.P. Zhu, Y.L. Xu / Journal of Sound and Vibration 285 (2005) 365–390 385
in agreement with those in scenarios 1 and 3, respectively. The results from Fig. 15 show that for
scenario 1, element 1 is correctly considered as the possible damaged location by the slopes and
curvatures of the first and second mode shapes. For damage scenario 3, element 1 is correctly
identified as a possible damage location by the slope and curvature of the first mode shape and by
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the curvature of the second mode shape. Element 2 can be correctly localized by the slope of the
first mode shape and by the slope and curvature of the second mode shape.

4.2.3. Damage quantification

To compare the effectiveness of incomplete measured natural frequencies on damage detection,
the relative changes in the first, the first two and all the three measured natural frequencies are
used to identify the damage, respectively. Fig. 16 shows the results of damage detection for
different damage scenarios by using the three groups of measured frequencies. In scenario 1, the
damage occurring in the first storey is identified as 12.00%, 12.44% and 12.46% by using the first
one, the first two and the three natural frequencies, respectively, which slightly deviate from the
preset damage of 13.12%. In scenario 2, the first storey of 27.99%, 25.84% and 25.55% damage



ARTICLE IN PRESS

Table 2

Damage scenarios and the corresponding frequency changes for the 3-storey near periodic test building

Mode no. Frequency change Doi and Doi=oi in percentage due to damage

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Storey Damage Storey Damage Storey Damage Storey Damage Storey Damage Storey Damage

1 13.12% 1 26.74% 1 26.74 2 13.12 1 26.74 2 26.74

1 �0:6897 ð�3:26%Þ �1:6080 ð�7:60%Þ �1:8407 ð�8:70%Þ �2:2977 ð�10:86%Þ

2 �1:3712 ð�2:25%Þ �2:5230 ð�4:14%Þ �3:2116 ð�5:27%Þ �3:9063 ð�6:41%Þ

3 �0:4574 ð�0:51%Þ �0:9149 ð�1:02%Þ �3:9016 ð�4:35%Þ �5:9734 ð�6:66%Þ
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Fig. 16. Detection of damages in the 3-storey near periodic test building in the 4 scenarios.
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size is identified using the first one, the first two and the three natural frequencies, respectively, as
compared with the preset damage of 26.74%. It is seen that the accuracy of predicting damage size
in scenario 2 (severe single damage) does not increase as the increase in the number of used
frequencies. This result may be attributed to many factors including the possible measurement
errors in the second and third natural frequencies. Nevertheless, the damage size predicted using
the three natural frequencies is very close to that using the first two natural frequencies. The
identified damage sizes of the first storey are about 25.0%, 26.2% and 26.6%, and about 10.94%,
13.60% and 13.10% for the second storey by using the first one, the first two and the three
frequencies in scenario 3, respectively. The identified damages of the first storey are about 25.0%,
26.3% and 25.8%, and about 23.31.94%, 27.60% and 26.5% for the second storey by using the
first one, the first two, and the three frequencies in scenario 4, respectively. The identified damages
sizes in the multiple damages cases by the two or three natural frequencies match better with the
preset ones than those by the first frequency only. However, even if only the first frequency is
used, the differences between the predicted and preset ones are not significant. The satisfactory
identified results clearly demonstrate that the proposed approach is still suitable and workable for
damage detection of actual near mono-coupled periodic structures and robust for the
measurement noise.
5. Conclusions

In this paper, the sensitivity coefficients of mode shapes, slopes and curvatures of mode shapes
of a mono-coupled periodic structure with respect to damage have been derived. For a mono-
coupled periodic spring-mass system, these sensitivity coefficients do not depend on structural
parameters, such as stiffness and mass, and thus avoid the requirement of an analytical model of
the system in damage detection. The comparative study of a 10-element mono-coupled periodic
spring-mass system shows that among natural frequencies, mode shapes, slopes and curvatures,
the mode shape curvatures are the most sensitive to damage, but the slopes of mode shapes are
more indicative of damage location. The larger changes in the natural frequencies imply higher
sensitivity of these modes to damage, which is beneficial for choosing a few of the lower modes to
localize the damage.

A two-stage sensitivity-based method, which utilizes the slopes and curvatures of mode shapes
to localize damages and limited natural frequencies to quantify damages of mono-coupled
periodic systems, has been presented. Numerical results of a 20-element mono-coupled periodic
spring-mass system show that single and multiple damages, either slight or severe damages, can be
accurately localized using a few of the slope and curvature of the lower mode shapes. For single or
multiple damages with the same size, the size of the damage can be identified accurately using only
the first frequency, and for multiple damages with different sizes, the accuracy for identifying the
damage size depends on the number of used frequencies. The 3-storey near mono-coupled
periodic building model has also been investigated experimentally to further consider the influence
of some actual factors such as measurement noise and non-perfect periodicity of structures on the
application of the proposed method. The experimental results show that the proposed method can
accurately detect either slight or severe damages in single and multiple locations in near mono-
coupled periodic structures and it is robust for measurement of noise pollution.
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